

EC Regulations

- EC Regulation 2092/91
 - organic growers must use organically produced seed where available
- EC Regulation 1452/2003
 - prohibits the use of treated conventional seed
 - no derogations on the grounds of seed quality if the variety is registered in the organicxseeds database

Rationale

- Many plant pathogens are seed borne
- Use of disease-free (clean) seed is important for their management / control
- Especially important for organic production where there are few options for control in the field
- Seed health standards should be more stringent for seed used in organic production

Achieving Clean seed

Options:

- 1. Test the seed for presence of pathogens and only use clean seed lots
- 2. Treat the seed (and/or mother plants) to eliminate the pathogens
- 3. Combine the two test and treat only if necessary

Seed testing

- Can never guarantee that a seed lot is completely healthy
 - zero disease tolerance is not possible
- Can only test a sample
 - detection limit = minimum % inf. seed which can be reliably detected (depends on sample size)
 - analytical sensitivity = minimum numbers of the pathogen which can be reliably detected (depends on assay design)

Design of Seed Health Assays

- Detection limits should be derived from tolerance standards which minimise disease risk and are based on an understanding of disease epidemiology
- Mostly lacking or arbitrarily implied as a result of the sample size
- Onions / neck rot
 - Epidemiological studies → 0.1 %
 - Most tests done on 400 seeds → 0.75 %

Conventional seed

- Relies on the use of fungicides for disease management both during seed production and treatment of the harvested seed
- Rare to find un-treated conventional seed easier to treat all seed than to test and treat on the basis of need
 - lack of tolerance standards or treatment thresholds

'Official' Seed health standards

There are no specific seed health standards/requirements for vegetables:

The Vegetable Seed (England) Regulations (2002)

"Diseases shall be at the lowest possible level that can be achieved.'

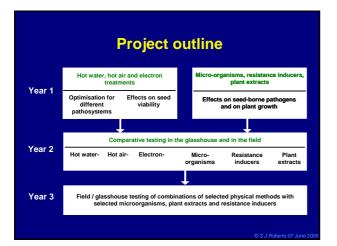
STOVE project

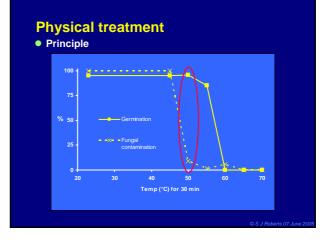
Seed Treatments for Organic VEgetable production

- EC co-funded project QLK5-2002-02239
- Three years: Mar 2003 to Feb 2006
- Web-site: www.stove-project.net

STOVE - aim

To improve and develop organicallyacceptable methods for control of seedborne pathogens of vegetable crops


- BBA, Germany (co-ordinator)
 - PRI, Netherlands
- HDRA, UK
- University of Turin, Italy Findus, Sweden
- Gothenburg University, Sweden
- Nunhems (Hild), Germany


STOVE - hosts/pathogens

- Lamb's lettuce Phoma valerianellae
- Carrot Alternaria dauci (leaf blight), A. radicina (black root rot)
- Brassicas Xanthomonas campestris pv. campestris (bacterial black rot)
- Carrot Xanthomonas hortorum pv. carotae (bacterial blight)
- Brassicas Alternaria sp. (dark leaf spot)
- Parsley Septoria petroselina
- Bean Colletotrichum lindemuthianum (anthracnose)
- Pea Ascochyta pisi (leaf, pod spot)

Treatments		
Physical treatments	Commercial micro-organisms	Other commercial
Hot water Hot air Electron bombardment	MSMX (Streptomyces griseoviris) Cedomon / BA 2552 (Pseudomonas chlororaphis) Serenade (Bacillus subtilis) MBI 600 (Bacillus subtilis) FZB 24 (Bacillus subtilis) Tri 002 (r. harzanum T22)	Milsana Tillecur Chitoplant Kendal ComCat
		© S J Roberts 07 June 200

Non-commercial res. inducers	Experimental natural compounds	Experimental micro-organisms
Bion Jasmonic acid Salicylic acid	Essential oils: e.g. oregano, peppermint, basil, clove, thyme, manuka, cinnamon Organic acids:	IK 726 (Clonostachys rosea) SLU 5 (Pseudomonas sp.) MSA 35
	lactic-, acetic-, citric, propionic- and ascorbic acid	(Fusarium sp.) Other unidentified strains

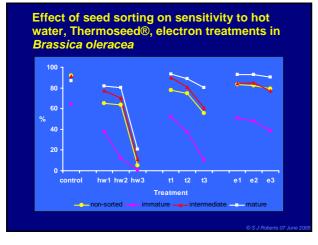
Hot water

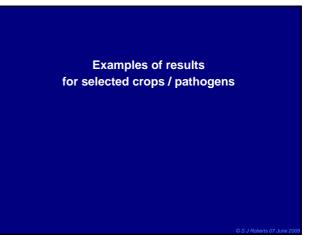
- Used for ca. 100 yrs
- Simple, relatively 'low tech'
- Big disadvantage that seed needs drying after treatment
- Problem of variation in sensitivity

Hot air - ThermoSeed®

- Treatment with hot, humid air for a short time with precise control of:
 - Temperature
 - Air humidity
 - Treatment time

- Developed in Sweden by Acanova for cereals (www.acanova.se)
- Now being applied as an alternative to chemical treatments for conventional production – 1000 t/week plant under construction

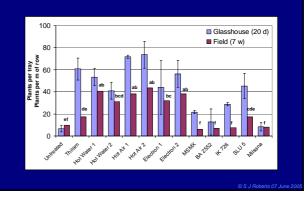

Electron treatment

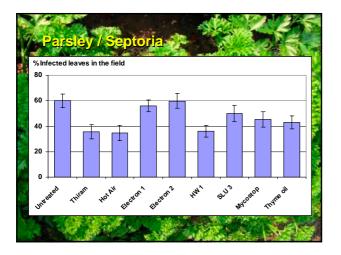

- Mobile system
- Based on TV technology
- Seed falls past a beam of electrons
- Voltage and dose adjusted to penetrate only the seed coat

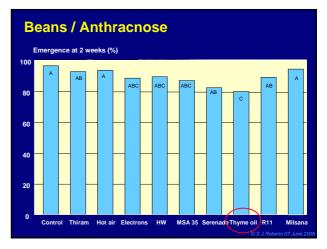
Physical treatments

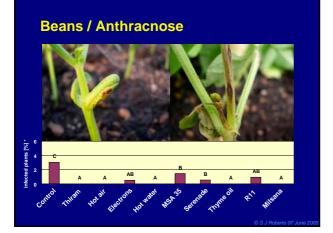
- Problem with all physical treatments: variation in sensitivity
- between cultivars of same species
 between lots/batches of same cultivar
- Investigated at PRI using seed sorting based on chlorophyll fluorescence
 - − high chlorophyll → immature
 - low chlorophyll → mature

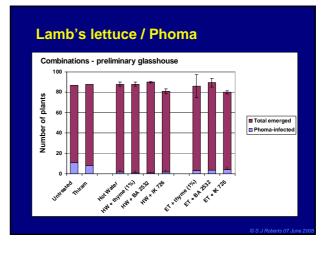
Carrots / Alternaria

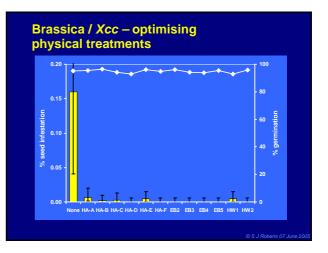


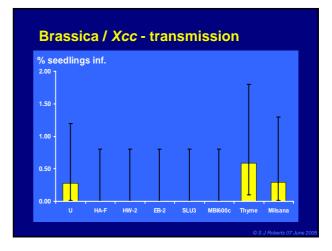

A. dauci – poor emergence, leaf blight




A. radicina – poor emergence, black root rot


Carrots / Alternaria emergence





Summary

- Lack of seed health standards for vegetable seeds – a problem for effective testing programmes
- Promising physical treatments identified for many of the host/pathogen combinations
- Seed maturity (as indicated by chlorophyll fluorescence) affects sensitivity to physical treatments
- Certain plant oils (e.g. thyme, oregano) are highly inhibitory to the pathogens tested (but can be phytotoxic)

Summary

- Performance of the non-physical methods (micro-organisms, plant extracts) was generally better in the greenhouse than in the field.
- Most resistance inducing compounds (e.g. salicylic acid, jasmonic acid, Bion) were excluded in the first round of screening.
- Field and glasshouse trials on the most promising treatments and combinations are currently in progress

Acknowledgements

The data presented was obtained by the collaborative efforts of all colleagues in the STOVE project

