

Outline

- Background thinking
- Transmission from seed to seedling
- Spread in transplants
- Implications for seed health

Black rot

- Caused by Xanthomonas campestris pv campestris (Xcc)
- V-shaped chlorotic, yellow lesions with blackened veins
- Systemic infection stunted or dead plants
- Premature defoliation, secondary soft rots
- At least six races

Black rot - epidemiology

- Xcc well known as a seedborne pathogen
- Seeds are considered the primary source of inoculum and means of long-distance dissemination
- Crop debris and weeds may act as sources of infection but their relative importance not clear
- Insects may also spread the pathogen
- Control:
- traditionally based on the use of disease-free (clean) seed
- most commercial brassica seed is tested

Seed testing

- The problem with seed testing:
- can never guarantee that a seed lot is completely healthy
- Can only test a sample:
- tolerance std. = minimum \% inf. seed which can be reliably detected (depends on sample size)
- analytical sensitivity = minimum numbers of the pathogen which can be reliably detected (depends on assay design)

Seed testing

- What is 'clean' seed ?
- seed which has an infection level below the tolerance standard and analytical sensitivity of the seed test

Design of Seed Health Assays

- Tolerance standards and analytical sensitivity should be defined which minimise disease risk and are based on an understanding of disease epidemiology
- The widely used tolerance standard of 0.01% is based on work done in USA on a directdrilled crop (Schaad et al. 1990)
- not appropriate for a transplanted crop
- most vegetable brassica crops are transplanted

Drivers for the work

- In the field, symptoms appear suddenly with ~100\% of plants affected
- can this be explained low levels of seed infection and spread during plant raising?
- Set effective seed health standards for current production practices
- requires epidemiological models driven by:
- transmission from seed to seedling
- rate of spread during plant raising
- rate of spread in field
- relate to sensitivity/threshold of test method

Transmission from seed to seedling

- Seed inoculated with different doses of Xcc
- Sown in module ' 308 ' trays
- Grown on capillary matting (no overhead water) to avoid secondary spread
- Samples of plants collected and 'leaf washings' diluted and plated on selective media
- Proportion of plants contaminated was estimated by maximum likelihood
- 'One-hit' infection model fitted

Percentage transmission

P - probability of transmission $\quad w$ - 'one hit' probability (0.015) d - number of Xcc per seed $\quad x$ - dose coefficient (0.034) Probability of transmission for a single bacterium on a single seed is 0.015

Transmission from seed to seedling

- More details in:
- Roberts et al. (1999) European Journal of Plant Pathology 105, 879-889.

Rate of spread of in transplants

- Series of experiments
- mimicking commercial production system with overhead gantry irrigation
- Single cell in block of 15 '308' trays sown with two inoculated seeds
- Symptoms 'mapped'
- Plants sampled and leaf washings done to detect Xcc on symptomless plants
- Models fitted to the data

Spread in transplants

Symptoms, single primary infector, $\sim 4,500$ plants

Spread in transplants

Symptoms only half the story !

Spread in transplants

- Overhead gantry irrigation:
- from one infested seed to nearly 4,500 contaminated seedlings in 6 weeks
- final level 98%, limit of experiment

Spread in transplants

Model for overhead irrigation:

$$
\ln \left(\frac{p_{c}}{1-p_{c}}\right)=\ln \left(a_{c}\right)+b_{c} \ln \left(c_{c}+\sqrt{k_{c} \cdot x^{2}+y^{2}}\right)+r_{c} \cdot t
$$

where:
p is the proportion of plants contaminated x and y are the distance from primary infector, t is the time, b is the gradient, k is a directional scaling parameter

Spread in transplants

- Range of parameter estimates obtained from different experiments

Experiment Model parameters				
	k	$\ln \left(a_{c}\right)$	b_{c}	r_{c}
	15.9	4.76	-3.40	0.201
	15.9	-1.3	-1.90	0.342
	8.8	-0.77	-5.37	0.516

Spread in transplants

- Model parameters used to calculate the potential contamination in commercial-scale blocks of 100,000 transplants for different numbers of uniformly distributed primary infectors:
- 1 primary $\rightarrow 3$ to 85%
-20 primaries $\Rightarrow 46$ to 99%

Implications for seed health

- Now need to take account the probability of transmission occurring:
- depends on the numbers of Xcc per infested seed:

10 CFU	$\Rightarrow 0.03$
1000 CFU	$\Rightarrow 0.12$

- Combining with potential contamination levels.....

Block of 100,000 transplants:

1 inf. seed in	\% inf	CFU per inf seed	Prob. of transmission	Average \% contam. of transplants
50,000	0.002	10	0.06	$0-5$
		100	0.12	$1-11$
25,000	0.004	1000	0.23	$1-21$
		100	0.14	$1-13$
		1000	0.26	$3-26$
10,000	0.01	10	0.25	$5-46$
		100	0.46	$7-25$
		1000	0.72	$12-45$
5,000	0.02	10	0.44	$20-71$
		100	0.71	$32-70$
		1000	0.92	$42-91$

Implications for seed health

- Finally look at the probability of getting a positive seed test for the different initial \% seed infestation and CFU per inf seed
- 'Standard' test method:
- dilution plating on selective media
- $\mathbf{3}$ sub-samples of $\mathbf{1 0 , 0 0 0}$ seeds in 100 ml
- with centrifugation ($\sim 10 x$ conc.) \Rightarrow analytical sensitivity $1.5 \mathrm{CFU} / \mathrm{ml}$
- or no centrifugation $\Rightarrow 15 \mathrm{CFU} / \mathrm{ml}$

Implications for seed health

- Probability of a positive test result, P_{+}, depends on:
- the probability of at least one infested seed being contained in the sample:

$$
P_{\text {cont }}=1-(1-\theta)^{n}
$$

where θ is the true proportion of infested seeds, n is the sample size

- if present, the probability of detecting an infested seed in a sub-sample:

$$
P_{d}=1-\mathrm{e}^{-\lambda v}
$$

λ is the density of bacteria, v is the effective volume plated

- Thus, $P_{+}=P_{\text {cont }} \times P_{d}$

Definitions

- Unacceptable seed lot:
- expected average contamination of transplants > 10\% (arbitrary)
- Unacceptable seed test:
- prob. of positive result << prob. of transmission for an unacceptable lot

Seed test results

1 inf. seed in	\% inf	CFU perinf seed	Prob. of transmission	Average \% contam. of transplants	Pr. + seed test	
					Cent.	No cent.
50,000	0.002	10	0.06	0-5	0.08	0.01
		100	0.12	1-11	0.39	0.08
		1000	0.23	1-21	0.45	0.39
25,000	0.004	10	0.14	1-13	0.13	0.01
		100	0.26	3-26	0.60	0.13
		1000	0.47	5-46	0.70	0.60
10,000	0.01	10	0.25	7-25	0.17	0.02
		100	0.46	12-45	0.82	0.17
		1000	0.72	19-71	0.95	0.82
5,000	0.02	10	0.44	20-44	0.33	0.04
		100	0.71	32-70	0.98	0.33
		1000	0.92	42-91	0.99	0.98

Implications for seed health

- Tolerance standard of 0.004\% for transplanted crops ?
- need to test 75,000 seeds for $P \geq 0.95$
- Omitting centrifugation gives a greater risk of unacceptable tests
- Biggest risk of detection failures for epidemiological significant seed infestation:
- low numbers of pathogen are spread over relatively larger numbers of infested seeds

Implications for seed health

- Seems counter intuitive:
- tendency to assume that the biggest risk comes from seeds which have high level infestation
- whilst true that they individually have a higher prob. of transmission, they are also easier to detect

Cautions

- Models, assumptions and calculations can be considered as imperfect, too simplistic:
- E.g.
- seed tests assumed to be 'perfect' with no interfering saprophytes - in reality the prob. of detection will be lower
- uniform distribution of primaries

Finally

- Need to consider both the analytical sensitivity and the tolerance standard (sample size) of the test when devising seed health tests for bacterial pathogens
- One simple way to improve sensitivity is to test the same total number of seeds in smaller sub-samples

The real workers !

- Josie Brough
- Paul Hunter
- Lea Hiltunen
- Barbara Everett
- Hort. Services staff at Warwick HRI
$11^{\text {th }}$ International Conference on Plant Pathogenc Bacteria

